High-momentum particle identification with HMPID

Search for the origins of p/π ratio

Sona Pochybova

MTA Wigner RCP

ELTE Physics seminar
November 16, 2015
Measurement of p/π ratios and why it is so interesting?

- The p/π ratio is a source of experimental surprises ever since we are able to measure it in various systems $e^+ + e^-$, Heavy-Ion and recently, as I will show and discuss in this presentation, proton-proton collisions.
- It’s measurement poses an experimental as well as theoretical challenge.
- It inspires new experimental approaches and theoretical ideas.
Outline

1. p/π ratio in history
 - Measurements at RHIC
 - Measurements at LHC
 - Theoretical understanding of the ratio

2. p/π ratio in proton-proton collision measured with HMPID
 - The HMPID detector
 - Proton and pion spectra and the p/π ratio with HMPID

3. p/π ratio from 2-particle correlation
 - Correlation measurement
 - Per-trigger yields of protons and pions in jet and bulk p/π ratio in jet and bulk

4. Understanding the p/π ratio and future measurements
1. p/π ratio in history
 - Measurements at RHIC
 - Measurements at LHC
 - Theoretical understanding of the ratio

2. p/π ratio in proton-proton collision measured with HMPID
 - The HMPID detector
 - Proton and pion spectra and the p/π ratio with HMPID
Outline

1. p/π ratio in history
 - Measurements at RHIC
 - Measurements at LHC
 - Theoretical understanding of the ratio

2. p/π ratio in proton-proton collision measured with HMPID
 - The HMPID detector
 - Proton and pion spectra and the p/π ratio with HMPID

3. p/π ratio from 2-particle correlation
 - Correlation measurement
 - Per-trigger yields of protons and pions in jet and bulk
 - p/π ratio in jet and bulk
Outline

1. p/π ratio in history
 - Measurements at RHIC
 - Measurements at LHC
 - Theoretical understanding of the ratio

2. p/π ratio in proton-proton collision measured with HMPID
 - The HMPID detector
 - Proton and pion spectra and the p/π ratio with HMPID

3. p/π ratio from 2-particle correlation
 - Correlation measurement
 - Per-trigger yields of protons and pions in jet and bulk
 - p/π ratio in jet and bulk

4. Understanding the p/π ratio and future measurements
p/π ratio at RHIC

‘baryon puzzle’

- central AuAu collisions
 - ratio **anomalously high** ∼ 1 between 2 − 5 GeV/c
 - strong dependence with momentum with a **peak**
- peripheral AuAu collisions and dAu
 - similar values
 - not such a strong p_T dependence
Quark coalescence

- *Phys. Rev. Lett. 90, 202303(nucl-th/0301087)*
 - R. J. Fries, B. Mueller, C. Nonaka, and S. A. Bass
 - ‘emission of hadrons with transverse momentum up to about 5 GeV/c in central relativistic heavy ion collisions is dominated by recombination’

- *Phys. Rev. Lett. 90, 202302(nucl-th/0301093)*
 - V. Greco, C. M. Ko, and P. Levai
 - ‘Coalescence of minijet partons with the partons from the quark-gluon plasma formed in relativistic heavy ion collisions is suggested as the mechanism for production of hadrons with intermediate transverse momentum’
p/π ratio at RHIC: \(v_2 \) measurements

\[\frac{p}{π} \text{ ratio at RHIC: } v_2 \text{ measurements} \]

\[\text{Phys. Rev. C 72 (2005) 14904} \]

\[\begin{align*}
\text{Hydro model} & : \\
\pi & : \quad \text{dashed line} \\
K & : \quad \text{dotted line} \\
P & : \quad \text{solid line} \\
\Lambda & : \quad \text{solid line (blue)}
\end{align*} \]

\[\begin{align*}
\text{PHENIX Data} & : \\
\pi^+ + \pi^- & : \quad \text{diamonds} \\
K^+ + K^- & : \quad \text{downward triangles} \\
p + p & : \quad \text{green circles}
\end{align*} \]

\[\begin{align*}
\text{STAR Data} & : \\
h^+ + h^- & : \quad \text{stars} \\
K_S^0 & : \quad \text{red triangles} \\
\Lambda + \Lambda & : \quad \text{blue circles}
\end{align*} \]

\[\begin{align*}
\text{p}_T < 2 \text{ GeV/c} & : \\
\text{mass ordering, Hydro OK} & : \\
\text{p}_T > 2 \text{ GeV/c} & : \\
\text{mass ordering breaks} \\
\text{baryon/meson splitting} & : \\
\end{align*} \]

Quark coalescence and elliptic flow

- **Phys. Rev. Lett. 91, 092301(nucl-th/0302014)**
- D. Molnar and S. A. Voloshin
- ‘quark coalescence enhances hadron elliptic flow at large \(p_T \)’
Number of quark (n_q) scaling

- Supports the idea of coalescence enhancing flow
p/π ratio at RHIC: number of quark scaling

Number of quark \((n_q)\) scaling

- Supports the idea of coalescence enhancing flow

What happens at LHC?
p/π ratio at the LHC

PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

- p/π ratio continues to show anomalous behavior at the LHC
- it’s value is strongly momentum dependent
- also the peripheral collisions show a peak (smaller)
- let’s look at the v_2
p/π ratio at the LHC: v_2 origins

JHEP 1506 (2015) 190

<table>
<thead>
<tr>
<th>p_T < 3 GeV/c</th>
<th>mass ordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T > 3 GeV/c</td>
<td>baryon/meson splitting</td>
</tr>
</tbody>
</table>

ALICE
Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
$|\eta| < 0.8$
and $|y| < 0.5$

<table>
<thead>
<tr>
<th>Particle species</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^\pm</td>
</tr>
<tr>
<td>K^\pm</td>
</tr>
<tr>
<td>K^0_s</td>
</tr>
<tr>
<td>$p+\bar{p}$</td>
</tr>
<tr>
<td>ϕ</td>
</tr>
<tr>
<td>$\Lambda+\bar{\Lambda}$</td>
</tr>
<tr>
<td>$\Xi^++\bar{\Xi}^-$</td>
</tr>
<tr>
<td>$\Omega^++\bar{\Omega}^-$</td>
</tr>
</tbody>
</table>

ν_2 origins

\[v_2^{\text{SP}}(|\eta| > 0.9) \]

\(\text{ALI-PUB-82451} \)
p/π ratio at the LHC: v_2 origins

JHEP 1506 (2015) 190

ALICE
Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
$|\eta| < 0.8$
and $|y| < 0.5$

Particle species
$\pm\pi, K, p, \bar{p}, \phi, \Lambda, \bar{\Lambda}, \Xi, \bar{\Xi}, \Omega, \bar{\Omega}$

violation of n_q scaling
p/π ratio at the LHC: v_2 origins

JHEP 1506 (2015) 190

ALICE
Pb-Pb $\sqrt{s_{\text{NN}}} = 2.76$ TeV

$|n| < 0.8$
and $|y| < 0.5$

violation of n_q scaling
$\sim 20\%$

mass ordering restored
Correlation measurement:

Is the p/π ratio connected to jet-fragmentation? possibility to separate hard jet from underlying event

anomalous ratio associated with bulk
Current understanding of the ratio measured in Heavy-Ion collisions

- LHC measurements suggest a **mass ordering rather than number of quark scaling** that was observed at RHIC
- the anomalous ratio is connected with **physics of the ‘bulk’**
- the ‘bulk’ particle production is associated with soft physics described by *hydrodynamical models*
- coalescence questioned
Current understanding of the ratio measured in Heavy-Ion collisions

- LHC measurements suggest a **mass ordering rather than number of quark scaling** that was observed at RHIC
- the anomalous ratio is connected with **physics of the ‘bulk’**
- the ‘bulk’ particle production is associated with soft physics described by *hydrodynamical models*
- coalescence questioned

What is happening in proton-proton collisions?
The HMPID detector

- Part of ALICE detector system
- \(|\eta| < 0.5, \ 0 < \varphi < 1/3\pi, \ \sim 7\% \ of \ ALICE \ acceptance\)
- Ring Imaging CHerenkov (RICH) detector
- if \(v(\text{particle}, n) > c(n)\) light-cone is emitted around it’s path

\[
\cos \Theta_{ch} = \frac{1}{\beta n}
\]

\((n\text{-refractive index})\)

Ring size \((\Theta_{ch})\) together with momentum information from tracking detectors provides \textit{PID}
Particle identification with HMPID: n_{σ} variable

Θ_{ch}^{rec} distributed around $\Theta_{ch}^{th}(i = \{\pi, K, p\})$

$$n_{\sigma}(m_i) = \frac{\Theta_{ch}^{rec} - \Theta_{ch}^{th}(i)}{\sigma_i}, \quad i = \{\pi, K, p\}$$

possibility to identify track-by-track ($|n_{\sigma}(m_i)| < 2$)

Separation capability: π/K: $p_T < 3$ GeV/c, K/p: $p_T < 5$ GeV/c
Particle identification with HMPID: n_σ vs p_T

proton well separated

π and K ‘stripes’: merging

projection of $n_\sigma(m_\pi)$

MC truth π, K show clear overlap
Particle identification with HMPID: n_σ vs p_T

3.5 < p_T < 4.0 GeV/c

Area in the triangle
Impossible to separate π from K
Reject all tracks in that area \rightarrow severe loss of efficiency
Extending the pion identification: exclusion cut

Solution

Not only look how close is the Θ_{ch}^{rec} to $\Theta_{ch}^{th}(\pi)$

Also how far it is from $\Theta_{ch}^{th}(K)$

Look at $n_\sigma(m_K)$

Efficiency remains high

Contamination from Kaons low ($< 10\%$)
Proton and pion spectra with HMPID

HMPID track-by-track (HMP_{tbt})

results compared to statistical analyses

results consistent within 5%
Proton and pion spectra with HMPID

Relativistic rise in TPC (rTPC)

large systematic errors, jumps at ≈ 3 GeV/c
possibility to improve precision utilizing HMP_{tbt}
p/π ratio with HMPID

Ratio **not described by Pythia** Monte Carlo generator

Similar behavior to Heavy-Ion

Shows p_T dependence with **peak** at ~ 3 GeV/c
Correlation measurement

Analysis set-up

Unidentified trigger correlated with **pions** and **protons** identified with HMPID

Trigger: \(4 < p_T < 10 \text{ GeV}/c, \ 0 < \varphi < 2\pi, \ |\eta| < 0.9 \)

Associated: \(p_T = \{1.5, 2.0, 2.5, 3.0, 4.0\}, \ 0 < \varphi < 1/3\pi, \ |\eta| < 0.5 \)

\[
S(\Delta\eta, \Delta\varphi):
\]
signal events

\[
B(\Delta\eta, \Delta\varphi):
\]
mixed event pair-efficiency
Correlation measurement: defining jet and bulk

\[\Delta \phi \] distribution of yields

- Two peaks sitting on pedestal
- Peaks: jets fitted with 2-Gaus + constant
- Pedestal: bulk identified with constant from peak-fit
Per-trigger yields of protons and pions in jet and bulk

Jet and bulk contribute evenly to pion yield at $p_T > 2$ GeV/c

Difference for jet and bulk in proton yield contribution
p/π ratio in jet and bulk

p/π (Bulk)

Higher than p/π (Jet)

Agrees with measurement obtained from spectra

protons emerge from bulk in a different way than from a jet

Similar observations made in Heavy-Ion
Towards understanding of the p/π ratio

What we’ve measured so far

- RHIC measured **anomalous values of p/π ratio** dependent on momentum
- Theory saw this as a proof of **collective behavior** in the early stages of Heavy-Ion collisions (elliptic flow and coalescence)
- LHC confirmed the behavior of the ratio
- **LHC** measured **violation of the number of quark scaling**
- Correlation measurements show, that **ratio** is connected with the **soft physics of the bulk** associated with collectivity
- *Measurements in proton-proton collisions show similar patterns to those observed in Heavy-Ion*
Towards understanding of the p/π ratio

What to do next

- new theories talking about **collectivity in proton-proton collisions**
 - Hydrodynamics, CGC
- theories looking for flow boosting **mechanisms not connected to collectivity**
 - random parton escape mechanism (nucl-th/1502.05572)
 - L He, T Edmonds, Z-W Lin, F Liu, D Molnar, F Wang
- new experimental research
 - ν_2 measurements in proton-proton collisions at various multiplicities
 - *soft and hard jets event tagging* (SP)
adding pQCD to hydrodynamical calculations brings the v_2 down
$n_\sigma(m_K), n_\sigma(m_p)$
using $S/\sqrt{S+B}$ ratio
looking for maximum in several p_T bins
fit with $p_0 \times p_T/(p_1 - p_T)$
random escape mechanism

nucl-th/1502.05572

With only random escape w/o Hydro (thin lines) $v_2 \neq 0$