QCD thermodynamics: beyond perturbation theory

A. Jakovác

ELTE, Dept. of Atomic Physics
1. Introduction

2. The $\mu = 0$ equation of state

3. Order of phase transition: phase boundary

4. Position of the Critical EndPoint (CEP)

5. Conclusions
1. Introduction

2. The \(\mu = 0 \) equation of state

3. Order of phase transition: phase boundary

4. Position of the Critical EndPoint (CEP)

5. Conclusions
Challenges in thermodynamics of strong interaction

MC measurement of QCD pressure at physical point

- **EoS from lattice simulations**
 (Sz. Borsanyi et.al. 2010)

- **crossover at** $T_c = 156$ MeV
 (Y. Aoki et.al. 2006)

- **perturbative QCD**: resummations

- **hadrons**: how to treat (unstable) bound states?

- **what is the order parameter?** (is there at all?)

[Graph showing p/T vs T (MeV) with data points and a best fit line labeled as MC data. The curve crosses through SB.]
Challenges in thermodynamics of strong interaction

MC measurement of QCD pressure at physical point

- EoS from lattice simulations

 \(\text{(Sz. Borsanyi et.al. 2010)} \)

- crossover at \(T_c = 156 \text{ MeV} \)

Order of the phase transition

Columbia plot

- crossover PhT in the physical point

- find the 2nd order boundary near chiral point
Challenges in thermodynamics of strong interaction

MC measurement of QCD pressure at physical point

- EoS from lattice simulations
 (Sz. Borsanyi et.al. 2010)
- crossover at $T_c = 156$ MeV

Order of the phase transition

Columbia plot

Phase diagram

- critical line
- critical endpoint (CEP)
- iso S/N curves
- color superconductor phase

Wigner RC, February 27, 2017 4 / 34
1. Introduction

2. The $\mu = 0$ equation of state

3. Order of phase transition: phase boundary

4. Position of the Critical EndPoint (CEP)

5. Conclusions
Perturbative description of the EoS

(J.O. Andersen et.al. 2014)

- at high energy scales (high temperature): asymptotic freedom \(\Rightarrow \) perturbative QCD; from \(T \gtrsim 200 - 250 \) MeV
at high energy scales (high temperature): asymptotic freedom \Rightarrow perturbative QCD; from $T \gtrsim 200 - 250$ MeV

at low energy scales (low temperature): bound states are formed (hadrons) which interact “weakly” \Rightarrow perturbative hadron gas (HRG) description; up to $T \lesssim 170$ MeV
What drives the phase transition?

(J.O. Andersen et.al. 2014)

Problem

- p_{HRG} overshoots the real pressure
- $F_{HRG} \lesssim F_{pert} \quad QCD$ hadronic phase is always more stable

(T.S. Biró, A.J. 2014)
What drives the phase transition?

Problem

- p_{HRG} overshoots the real pressure
- $F_{HRG} \lesssim F_{pert \ QCD}$ hadronic phase is always more stable

Lesson

hadronic degrees of freedom must disappear from the system!
Problem

- \(p_{HRG} \) overshoots the real pressure
- \(F_{HRG} \lesssim F_{pert \, QCD} \) hadronic phase is always more stable

Lesson

hadronic degrees of freedom must disappear from the system!

We must learn, how to treat gas of bound states (cf. H-atom)!
Possible (traditional) explanation:

- quarks exist, but have large self-energies
 \[m_{q,g} \xrightarrow{T<T_c} \infty \]

 thermal weights \(e^{-\beta m} \ll 1 \): no quarks at \(T < T_c \) (confinement)

- hadrons dissociate at high temperature: no hadrons at \(T > T_c \)
Phase transition regime: quasiparticles ideas

Possible (traditional) explanation:
- quarks exist, but have large self-energies
 \[m_{q,g} \xrightarrow{T<T_c} \infty \]
 thermal weights \(\sim e^{-\beta m} \ll 1 \): no quarks at \(T < T_c \) (confinement)
- hadrons dissociate at high temperature: no hadrons at \(T > T_c \)
- MC data: no drastic variation in masses
- hadronic states are observable even at \(T \sim 1.5 T_c \)

hadrons do not disappear at \(T_c \)!
- If hadrons survive \(T_c \) why do not they dominate the pressure?
Particle behaviour in the phase transition regime at $T \sim 156$ MeV (crossover) phase transition

Observations vs. quasiparticle predictions

$150 \lesssim T \lesssim 250$ MeV: non-quasiparticle regime, changing degrees of freedom

nonperturbative methods are needed to describe this regime
Two particles with the same quantum numbers
same quantum number \Rightarrow only their mass can differ!

What do we observe in a mass spectrometer?

- ideally: 2 thin spectral lines

spectrum of two particles

Lesson:
changing width (changing spectrum) \Rightarrow changing # of dof.
Two particles with the same quantum numbers
same quantum number ⇒ only their mass can differ!

What do we observe in a mass spectrometer?

- **ideally**: 2 thin spectral lines
- **realistic**: broadened 2 spectral lines

Changing degrees of freedom
Two particles with the same quantum numbers
same quantum number \Rightarrow only their mass can differ!

What do we observe in a mass spectrometer?

- **Ideally**: 2 thin spectral lines
- **Realistic**: broadened 2 spectral lines
- **Width \sim mass difference**: no measurements can resolve the peak structure!
- **The states become indistinguishable \Rightarrow represent 1 dof**
Changing degrees of freedom

Two particles with the same quantum numbers
same quantum number \Rightarrow only their mass can differ!

What do we observe in a mass spectrometer?

- ideally: 2 thin spectral lines
- realistic: broadened 2 spectral lines
- width \sim mass difference: no measurements can resolve the peak structure!

the states become indistinguishable \Rightarrow represent 1 dof

Lesson:
changing width (changing spectrum) \Rightarrow changing # of dof!
Assume that we know the spectrum (measurement).

Goal: calculate pressure $P(\varrho)$

Strategy

- represent ϱ with a (quadratic) effective model
- calculate thermodynamics from this theory

energy density $\varepsilon = \frac{1}{2} \text{Tr} e^{-\beta H} T_{00}$, use KMS relation

Scalar field case

$$S = \int \frac{d^4q}{(2\pi)^4} \frac{1}{2} \Phi^*(q)\mathcal{K}(q)\Phi(q)$$

for consistency we need a physical spectrum only!

unitary, causal, Lorentz-invariant, E, \vec{p} conserving
Result:

Pressure as a function of the spectral function

\[P = \mp T \int \frac{d^4 q}{(2\pi)^4} \frac{\partial \mathcal{K}}{\partial q_0} \ln \left(1 \mp e^{-\beta q_0} \right) \varrho(q) \]

- generally nonlinear \(\varrho \) dependence due to \(\mathcal{K} \sim \frac{1}{\varrho} \)
 \[\Rightarrow P \] does not depend on the overall normalization of \(\varrho \).

- for free gas mixture \(\varrho(p) = \sum_i Z_i \delta(p_0 - E_p) \)
 we obtain \(P = \sum_i P^{(0)}(m_i) \): sum of partial pressures; no dependence on \(Z_i \), while they are nonzero!

- cf. Mott-effect, Dashen-formula

Changing degrees of freedom for two particles

How thermodynamics changes when peaks are merged?

- spectrum for two particles with different width, and a typical multiparticle continuum (non-quasiparticle system)
Changing degrees of freedom for two particles

How thermodynamics changes when peaks are merged?

- spectrum for two particles with different width, and a typical multiparticle continuum (non-quasiparticle system)
- at small width \Rightarrow two-particle energy density
- at large width \Rightarrow \sim one-particle energy density
- continuum: practically negligible energy density contribution
Gibbs paradox (actualized)

- In mixture of two bosonic gases the SB limit is $P = N_{\text{eff}} P_{SB}$, where $N_{\text{eff}} = 2$ if the masses are different and $N_{\text{eff}} = 1$ if the masses are equal.

 ⇒ discontinuous change for $\Delta m \to 0$!
Gibbs paradox (actualized)

- in mixture of two bosonic gases the SB limit is \(P = N_{\text{eff}} P_{SB} \), where \(N_{\text{eff}} = 2 \) if the masses are different and \(N_{\text{eff}} = 1 \) if the masses are equal
 \[\Rightarrow \text{discontinuous change for } \Delta m \rightarrow 0! \]
- Gas of free particles explains either \(N_{\text{eff}} = 2 \) or \(N_{\text{eff}} = 1 \)
 no tool to describe the change in \(N_{\text{eff}} \)
Gibbs paradox (actualized)

- In mixture of two bosonic gases the SB limit is \(P = N_{\text{eff}} P_{SB} \), where \(N_{\text{eff}} = 2 \) if the masses are different and \(N_{\text{eff}} = 1 \) if the masses are equal.
 \[\Rightarrow \text{discontinuous change for } \Delta m \to 0! \]

- Gas of free particles explains either \(N_{\text{eff}} = 2 \) or \(N_{\text{eff}} = 1 \)
 no tool to describe the change in \(N_{\text{eff}} \)

- With changing spectral functions \(N_{\text{eff}} \) is dynamical variable
 \[\Rightarrow \text{in interacting theories Gibbs paradox is smeared out} \]
Gibbs paradox for interacting gases

Gibbs paradox (actualized)

in mixture of two bosonic gases the SB limit is

\[P = N_{\text{eff}} P_{SB}, \]

where \(N_{\text{eff}} = 2 \) if the masses are different and \(N_{\text{eff}} = 1 \) if the masses are equal

\[\Rightarrow \] discontinuous change for \(\Delta m \to 0 \)

Gas of free particles explains either \(N_{\text{eff}} = 2 \) or \(N_{\text{eff}} = 1 \)
no tool to describe the change in \(N_{\text{eff}} \)

With changing spectral functions \(N_{\text{eff}} \) is dynamical variable

\[\Rightarrow \] in interacting theories Gibbs paradox is smeared out
Merging with continuum: melting

- one peak dominated regime: $N_{\text{eff}} = 1$
- continuum dominated regime: $N_{\text{eff}} = 0$
- if peak merges into a continuum \Rightarrow vanishing pressure
- particle ceases to be a thermodynamical dof

thermodynamic definition of $\#$ dof: $N_{\text{eff}}(T) = \frac{P(T)}{P_0(T)}$

Merging with continuum: melting

- one peak dominated regime: $N_{\text{eff}} = 1$
- continuum dominated regime: $N_{\text{eff}} = 0$
- if peak merges into a continuum \Rightarrow vanishing pressure
- particle ceases to be a thermodynamical dof

thermodynamic definition of $\#$ dof: $N_{\text{eff}}(T) = \frac{P(T)}{P_0(T)}$

good fitting function: $N_{\text{eff}} = N_0 + N_1 e^{-a\gamma^b}$ (typically $b = 1.5 - 2$)
An oversimplified (statistical) realization of these ideas for QCD

\[P_{\text{hadr}}(T) = N_{\text{eff}}^{(\text{hadr})} \sum_{n \in \text{hadrons}} P_0(T, m_n), \quad \ln N_{\text{eff}}^{(\text{hadr})} = -(T / T_0)^b, \]

\[P_{\text{QGP}}(T) = N_{\text{eff}}^{(\text{part})} \sum_{n \in \text{partons}} P_0(T, m_n), \quad \ln N_{\text{eff}}^{(\text{part})} = G_0 - c(N_{\text{eff}}^{(\text{hadr})})^d. \]

\[P = P_{\text{hadr}} + P_{\text{QGP}} \] total pressure, \(P_0 \) ideal gas pressure

- **hadrons**: Hagedorn-sp. up to a certain mass (\(m \lesssim 3 \text{ GeV} \))
- **partons** quark and gluon quasiparticles
- \(N_{\text{hadr}}(\gamma) \) common suppression factor for all hadrons: stretched exponential, and \(\gamma \sim T \)
- \(N_{\text{part}}(N_{\text{hadr}}) \) partonic suppression factor grows with the \# of available hadronic resonances.
• fit to MC data Sz. Borsanyi et.al., JHEP 1011 (2010) 077
fit to MC data \cite{Sz. Borsanyi et al., JHEP 1011 (2010) 077}

- $T < 150 \text{ MeV}$ from HRG using Hagedorn spectrum
 (pion mass input)
• fit to MC data Sz. Borsanyi et al., JHEP 1011 (2010) 077
• $T < 150 \text{MeV}$ from HRG using Hagedorn spectrum (pion mass input)
• $\gamma_{\text{hadr}} = \frac{T}{T_0}$, $N_{\text{hadr}} \sim e^{-\gamma^b_{\text{hadr}}}$: fit to avoid large hadron pressure
fit to MC data

$T < 150 \text{ MeV}$ from HRG using Hagedorn spectrum
(pion mass input)

$\gamma_{\text{hadr}} = \frac{T}{T_0}, \ N_{\text{hadr}} \sim e^{-\gamma_{\text{hadr}}}$: fit to avoid large hadron pressure

from pressure at $T > 300 \text{ MeV}$ fit QGP parameters
(fixed $m_q = 330 \text{ MeV}, \ m_g = 600 \text{ MeV}$)
Fit to MC data: Sz. Borsanyi et al., JHEP 1011 (2010) 077

- $T < 150$ MeV from HRG using Hagedorn spectrum (pion mass input)
- $\gamma_{hadr} = \frac{T}{T_0}$, $N_{hadr} \sim e^{-\gamma_{hadr}}$: fit to avoid large hadron pressure

- from pressure at $T > 300$ MeV fit QGP parameters (fixed $m_q = 330$ MeV, $m_g = 600$ MeV)

- quark and gluon width depends on the number of hadrons
 $\gamma_{QGP}^2 = \gamma_0^2 + c N_{hadr}^\alpha$, $N_{QGP} = e^{-\gamma_{QGP}^2}$.
Introduction

The $\mu = 0$ equation of state

Order of phase transition: phase boundary

Position of the Critical EndPoint (CEP)

Conclusions
• **Physical point:** crossover phase transition ✓

• **chiral limit** (chiral phase transition) and pure Yang-Mills

• tricritical point at \(m_{u,d} = 0 \), chiral line \(m_s \sim m_{u,d}^{2/5} \)

• must be a borderline between the two: where is it?
The chiral critical line

MC measurements and perturbative calculations:

![Graph showing MC measurements and perturbative calculations.](image)

- coarse lattice simulations show borderline
- pert. theory must assume spectrum when not at physical point

The chiral critical line

MC measurements and perturbative calculations:

- coarse lattice simulations show borderline
- pert. theory must assume spectrum when not at physical point
- recent lattice studies suggest much smaller values!

rescaling masses from physical point $m_\pi < 20 - 45$ MeV

The chiral critical line

MC measurements and perturbative calculations:

- coarse lattice simulations show borderline
- pert. theory must assume spectrum when not at physical point
- recent lattice studies suggest much smaller values!

rescaling masses from physical point $m_\pi < 20 - 45$ MeV
The curvature of the chiral line at small μ

2nd order phase transition surface in $m_{ud} - m_s - \mu$ space

\[\begin{align*}
\mu & \quad m_{ud} \quad m_s \quad \mu \\
\end{align*} \]

- $m_{ud} = m_s = m_c$ (diagonal) line: $m_c(\mu) < m_c(0)$ from coarse lattice (P. de Forcrand, O. Philipsen, 2007,2008) \Rightarrow no CEP?

- perturbative calculation: bends toward the physical point (P. Kovacs, Zs. Szep, PRD 75 (2007) 025015)

- RG study: perturbative result very sensitive to details (AJ, Zs. Szep, PRD 82 (2010) 125038)
Introduction

The $\mu = 0$ equation of state

Order of phase transition: phase boundary

Position of the Critical EndPoint (CEP)

Conclusions
M.A. Stephanov (2007): **almost** all available results
(M.A. Stephanov, PoS LAT2006:024,2006, [hep-lat/0701002])

- **black points:** pert. calculations, **green diamonds:** lattice, **red circles:** heavy ion freezout
- **all results depends strongly on the applied method!!**
M.A. Stephanov (2007): **almost all available results**
(M.A. Stephanov, PoS LAT2006:024,2006, [hep-lat/0701002])

- **black points**: pert. calculations, **green diamonds**: lattice, **red circles**: heavy ion freezout
- **all results depends strongly on the applied method!!**
- **What is the present status?**
Perturbative studies

M.A. Stephanov (2007): almost all available results
(M.A. Stephanov, PoS LAT2006:024,2006, [hep-lat/0701002])

- black points: pert. calculations, green diamonds: lattice, red circles: heavy ion freezout
- all results depends strongly on the applied method!!
- What is the present status?
- Why are there so large differences? What are the important effects?
MC calculation of phase diagram

Formula to compute on lattice:

\[
\text{Tr } e^{-\beta(H-\mu N)} \hat{O} = \frac{1}{Z} \int \mathcal{D}U \ e^{-S_g(\det \mathcal{M}(\mu))} \tilde{O}[U]
\]

where

- \(S_g\) gauge action
- \(S_f(\mu) = \int d^4x \bar{\Psi} (D_\mu \gamma_\mu + m - \gamma_0 \mu) \Psi = \int d^4x \bar{\Psi} \mathcal{M}(\mu) \Psi\)
 fermionic action with chemical potential

Problem (sign problem): \(\det \mathcal{M}(\mu)\) is not real!

\[
\gamma_5 \mathcal{M}(-\mu) \gamma_5 = \mathcal{M}^\dagger(\mu) \quad \Rightarrow \quad \det \mathcal{M}^*(\mu) = \det \mathcal{M}(-\mu).
\]

Consequence: \(e^{-S_g[U]} \det \mathcal{M}(\mu)\) is not a probability measure

\(\Rightarrow\) **No importance sampling!**
Idea: generate configurations at $T' \neq T$ and $\mu = 0$, and use them to calculate the finite μ case:

\[
\text{Tr } e^{-\beta(H-\mu N)} = \int \mathcal{D}U \, e^{-S_g(\beta)}(\det \mathcal{M}(\beta, \mu)) =
\]

\[
= \int \mathcal{D}U \frac{e^{-S_g(\beta)}(\det \mathcal{M}(\beta, \mu))}{e^{-S_g(\beta')}(\det \mathcal{M}(\beta', 0))} e^{-S_g(\beta')}(\det \mathcal{M}(\beta', 0)) =
\]

\[
= \left\langle \frac{e^{-S_g(\beta)}(\det \mathcal{M}(\beta, \mu))}{e^{-S_g(\beta')}(\det \mathcal{M}(\beta', 0))} \right\rangle Z(\beta', \mu = 0).
\]

The phase diagram

Critical endpoint

\[T_E = 162 \pm 2 \text{ MeV}, \]
\[\mu_E = 360 \pm 40 \text{ MeV}.\]
How reliable is this result?

Radius of convergence of rescaling (de Forcrand 2010)

- rescaling: ratio of two partition functions with energy difference
 \[
 \frac{Z(\mu)}{Z(0)} = e^{-\beta V \Delta f}
 \]

 ⇒ overlap exponentially vanishes for large volumes
 Statistics grows with $\sqrt{N_{\text{step}}}$ ⇒ exponentially large
 number of steps are required in the thermodynamic limit

- characterization of sign problem: isospin chemical potential μ
 \[
 \langle e^{2i\Theta} \rangle = \left\langle \frac{\det^2 M(\mu)}{|\det M(\mu)|^2} \right\rangle \sim e^{-\#\mu^2} \quad \Rightarrow \quad \# \text{ config.} \sim e^{\#\mu^2}.
 \]

- At imaginary $\mu/T \approx i\pi/3$ Roberge-Weiss phase transition
 ⇒ restrict radius of convergence

Conclusion

MC methods are reliable for $\mu_B^3 = \mu < T$
How reliable is this result?

Radius of convergence of rescaling (de Forcrand 2010)

- rescaling: ratio of two partition functions with energy difference
 \[\frac{Z(\mu)}{Z(0)} = e^{-\beta V \Delta f} \]

 \[\Rightarrow \text{overlap exponentially vanishes for large volumes} \]

 Statistics grows with \(\sqrt{N_{\text{step}}} \) \(\Rightarrow \) exponentially large
 number of steps are required in the thermodynamic limit

- characterization of sign problem: isospin chemical potential \(\mu \)
 \[\langle e^{2i\Theta} \rangle = \left\langle \frac{\det^2 M(\mu)}{|\det M(\mu)|^2} \right\rangle \sim e^{-\#\mu^2} \Rightarrow \# \text{ config.} \sim e^{\#\mu^2}. \]

- At imaginary \(\mu/T \approx i\pi/3 \) Roberge-Weiss phase transition
 \[\Rightarrow \text{restrict radius of convergence} \]

Conclusion

MC methods are reliable for \(\frac{\mu B}{3} = \mu \lesssim T \)
Latest MC results

(Bellwied et.al (BMW group) 2015)

- Imaginary μ_B calculation (no sign problem)
- Taylor expand results in μ and continue to real axis

![Graph showing temperature vs. baryonic chemical potential]

- left panel: radius of convergence
- right panel: for all μ_B the susceptibility curves can be scaled to each other \Rightarrow analytic

$\mu_B = 0.00 \text{ T}$
$\mu_B = 1.18 \text{ T}$
$\mu_B = 1.57 \text{ T}$
$\mu_B = 1.96 \text{ T}$
Latest MC results

(Bellwied et.al (BMW group) 2015)

- Imaginary μ_B calculation (no sign problem)
- Taylor expand results in μ and continue to real axis

Consequence

no sign of a phase transition until $\mu_B \lesssim 400$ MeV!
Semianalytic method

(cf. P. Kovács dissertation)

- CEP found at nonphysical pion mass, not at cont. limit.
- **one-parameter scaling hypothesis**: assume that one parameter determines the extrapolation to physical point
 choose $\Delta T(\chi)$ width of the susceptibility curve

\[\mu_{CEP} \text{ vs } \Delta T(\chi, \mu = 0): \text{ model calculations fits to numerical data} \]

(Fodor, Katz 2001, 2004).

- Phyiscal point at $\mu = 0$: width of susc. curve is $\Delta T(\chi) \approx 28$ MeV

(Aoki, Fodor et.al. 2006)

Prediction: $\mu_{CEP} \sim 1000$ MeV
Effective model: **chiral sigma model**

\[
\mathcal{L} = \frac{1}{2} \varphi (-d^2 - m^2) \varphi - \frac{\lambda}{24N} (\varphi^2)^2 + \bar{\psi} [i \gamma_5 \partial - m_q] \psi - \frac{g}{\sqrt{N}} \varphi T \psi
\]

(\varphi = (\sigma, \pi_a), T = (1, i\sqrt{2N_f} T_a \gamma_5), N = 4, N_f = 2)

- 1-loop resummed perturbation theory in large \(N\) expansion
- effective potential (free energy) \(\Rightarrow\) phase transition at

\[
\frac{g^2 N_f}{2\pi^2} \mu^2 + \left(\frac{\lambda}{36} + \frac{g^2 N_f}{6} \right) T^2 = m^2_\sigma
\]

\(\Rightarrow\) an ellipse in the \(\mu - T\) plane

- position of the CEP analytically determined
Effective model: chiral sigma model

\[\mathcal{L} = \frac{1}{2} \varphi(-d^2 - m^2) \]

\(\varphi = (\sigma, \pi_a), \quad T = (1, i\sqrt{2}) \)

- 1-loop resummed perturbation theory in large \(N \) expansion
- Effective potential (free energy): \(\Rightarrow \) phase transition at
 \[g^2 N_f \frac{\lambda^3}{2\pi^2} \mu^2 \]
 \(\Rightarrow \) an ellipse in \(T, \mu \) plane
- position of the CEP analytically determined

Prediction: \(\mu_{\text{CEP}} \sim 850 \text{ MeV} \)
Bosonic fluctuation

(λ, g) space: either first order or second order phase transition; border line tricritical points.

- Mean field predicts strongest phase transition $\exists (\lambda, g)$ where mean field predicts 1st order, FRG 2nd order PhT.
- Bosonic fluctuations soften the transition
- One-loop is quite good

To mimic \textit{bosonic fluctuations} in the gauge sector, the effect of \textit{confinement} (bound states) one may introduce the Polyakov-loop.

$$\Phi = \frac{1}{N_c} \left< \text{Tr} \mathcal{P} e^{\int_0^\beta i g \, d\tau A_0} \right>$$

- educated guesses to the form of the Polyakov-loop potential, fitted to Yang-Mills and QCD thermodynamics; eg.:

$$\frac{U(\Phi, \bar{\Phi})}{T^4} = -\frac{b_2(T)}{2} \Phi \Phi - \frac{b_3}{6} (\Phi^3 + \bar{\Phi}^3) + \frac{b_4}{4} (\Phi \Phi)^2.$$

- Polyakov-loop potential treated in mean field

- confined phase: $\Phi = 0$ (Z_3 symmetric phase)
 deconfined phase: $\Phi \neq 0$ (Z_3 broken phase)

- $\Phi \Rightarrow$ modified Fermi-Dirac distribution functions

$$N_q(T, \mu; \bar{\Phi}, \Phi) = \frac{1 + 2 \Phi e^{(E_q - \mu)/T} + \Phi e^{2(E_q - \mu)/T}}{1 + 3 \bar{\Phi} e^{(E_q - \mu)/T} + 3 \Phi e^{(E_q - \mu)/T} + e^{3(E_q - \mu)/T} \Phi \Phi}.$$
Other analytic models, role of bosonic fluctuations

QM large N with bosonic fluctuations

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
Other analytic models, role of bosonic fluctuations

chiral sigma model with/without Polyakov loops

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.

Other analytic models, role of bosonic fluctuations

DSE with/without Polyakov loops

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
Other analytic models, role of bosonic fluctuations

PQM with FRG (full fluctuations)

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
Other analytic models, role of bosonic fluctuations

Vector meson extended PQM

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.

(P. Kovács, Zs. Szép, Gy. Wolf, 2016)
Other analytic models, role of bosonic fluctuations

Some relevant results

Lesson

- correct treatment of bosonic fluctuations are important!
- analytic methods with fluctuations: $\mu_{B,CEP} \approx 800 - 1000 \text{ MeV}$
- DSE pure QCD approach: $\mu_{B,CEP} \approx 500 \text{ MeV}$ (better fermionic fluctuations?)
1. Introduction

2. The \(\mu = 0 \) equation of state

3. Order of phase transition: phase boundary

4. Position of the Critical EndPoint (CEP)

5. Conclusions
Conclusions

- Thermodynamics of strongly interacting matter is perturbative for $T < 150$ MeV (HRG), and $T > 250$ MeV (QCD) (at $\mu = 0$)
- in the critical domain (analytically) changing dof
 \Rightarrow hadron melting
 crucial: correct treatment of spectral properties
Thermodynamics of strongly interacting matter is perturbative for $T < 150$ MeV (HRG), and $T > 250$ MeV (QCD) (at $\mu = 0$).

in the critical domain (analytically) changing dof
\Rightarrow hadron melting

crucial: correct treatment of spectral properties

Columbia plot: borderline between 1st order phtr. and crossover: not seen in MC

Does the critical surface bend at small μ toward or away from the physical point?
Conclusions

- Thermodynamics of strongly interacting matter is perturbative for $T < 150$ MeV (HRG), and $T > 250$ MeV (QCD) (at $\mu = 0$)
- in the critical domain (analytically) changing dof \Rightarrow hadron melting
 - crucial: correct treatment of spectral properties
- Columbia plot: borderline between 1st order phtr. and crossover: not seen in MC
- Does the critical surface bend at small μ toward or away from the physical point?
- location of the CEP: direct MC methods $\mu_{B,CEP} > 450$ MeV
 - crucial: correct treatment of bosonic fluctuations (direct or Polyakov loops)
- latest results: $\mu_{B,CEP} \approx 800 - 1000$ MeV
Thermodynamics from spectral function II.

We start from the Lagrangian:
\[\mathcal{L} = \frac{1}{2} \Phi^*(q) \mathcal{K}(q) \Phi(q) \]

- In order to reproduce the given \(\varrho \) spectral function we need
 \[\varrho = \text{Disc} i \mathcal{K}^{-1}, \quad \mathcal{K}^{-1}(q) = \int \frac{d\omega}{2\pi} \frac{\varrho(\omega, q)}{q_0 - \omega} \]

- Energy momentum tensor (Noether-current):
 \[T_{\mu\nu}(x) = \frac{1}{2} \varphi(x) D_{\mu\nu} \mathcal{K}(i\partial) \varphi(x) \]

where
\[D_{\mu\nu} \mathcal{K}(i\partial) = \left[\frac{\partial \mathcal{K}(p)}{\partial p^\mu} p_\nu - g_{\mu\nu} \mathcal{K}(p) \right] \]

and the symmetrized derivative is defined as
\[f(x)[(i\partial)^n]_{\text{sym}} g(x) = \frac{1}{n+1} \sum_{a=0}^n [(-i\partial)^a f(x)][(i\partial)^{n-a} g(x)]. \]

- We take its expectation value using KMS relation
 \[\langle \varphi \varphi \rangle(q) = n_{BE}(q_0) \varrho(q) \]

\[\Rightarrow \text{symmetrized derivative becomes normal one.} \]
Quantum statistical averages can be computed as

\[\text{Tr} e^{-\beta H} \hat{O} = \int DUD\bar{\Psi}D\Psi \ e^{-S} \ O[\Psi, U], \]

the action consists of a fermion and a gauge part \(S = S_f + S_g \).

- The fermionic part (with \(D \) covariant derivative):

 \[S_f = \int d^4x \bar{\Psi}(D_\mu \gamma_\mu + m)\Psi = \int d^4x \bar{\Psi} M\Psi, \quad \{\gamma_\mu, \gamma_\nu\} = 2\delta_{\mu\nu} \]

- The fermionic path integral yields

 \[\int D\bar{\Psi}D\Psi \ e^{-S_f} = \det M \]

- This contributes to the gauge action as

 \[\text{Tr} e^{-\beta H} \hat{O} = \int DU \ e^{-S_g}(\det M) \ O[U] \]

Consistency: real expression, since \((\det \gamma_5 = 1) \)

\[\gamma_5 M \gamma_5 = M^\dagger \quad \Rightarrow \quad \det \gamma_5 M \gamma_5 = \det M = \det M^\dagger \]

Algorithm: produce configurations with probability \(\sim e^{-S_g + \ln \det M} \)
For a conserved quantity $N_q = \int d^4x \bar{\Psi}_q \gamma_0 \Psi_q$ we can introduce a chemical potential

$$e^{-\beta H} \rightarrow e^{-\beta(H - \mu N)}$$

This modifies the fermionic action

$$S_f(\mu) = \int d^4x \bar{\Psi}(D_\mu \gamma_\mu + m - \gamma_0 \mu)\psi = \int d^4x \bar{\Psi} M(\mu)\psi.$$

Problem (sign problem): $\det M(\mu)$ is not real!

$$\gamma_5 M(-\mu) \gamma_5 = M^\dagger(\mu) \Rightarrow \det M^*(\mu) = \det M(-\mu).$$

Consequence: $e^{-S_g[U]} \det M(\mu)$ is not a probability measure

\Rightarrow No importance sampling!
How reliable is this result?

Numerical arguments (de Forcrand 2010)

- rescaling: ratio of two partition functions with energy difference
 \[
 \frac{Z(\mu)}{Z(0)} = e^{-\beta V \Delta f}
 \]
 \(\Rightarrow\) overlap exponentially vanishes for large volumes
 Statistics grows with \(\sqrt{N_{\text{step}}}\) \(\Rightarrow\) exponentially large number of steps are required in the thermodynamic limit

- characterization of sign problem: isospin chemical potential \(\mu\)
 \[
 \langle e^{2i\Theta} \rangle = \left\langle \frac{\det^2 \mathcal{M}(\mu)}{|\det \mathcal{M}(\mu)|^2} \right\rangle
 \]
How reliable is this result?

Numerical arguments (de Forcrand 2010)

- Rescaling: ratio of two partition functions with energy difference
 \[\frac{Z(\mu)}{Z(0)} = e^{-\beta V \Delta f} \]

 ⇒ overlap exponentially vanishes for large volumes

Statistics grows with \(\sqrt{N_{\text{step}}} \)

- Characterization of sign problem:
 \[\langle e^{2i\Theta} \rangle = \left\langle \frac{\det^2 M(\mu)}{|\det M(\mu)|^2} \right\rangle \]
Numerical arguments (de Forcrand 2010)

- rescaling: ratio of two partition functions with energy difference
 \[\frac{Z(\mu)}{Z(0)} = e^{-\beta V \Delta f} \]

 \[\Rightarrow \] overlap exponentially vanishes for large volumes
 Statistics grows with \(\sqrt{N_{\text{step}}} \) \(\Rightarrow \) exponentially large
 number of steps are required in the thermodynamic limit

- characterization of sign problem: isospin chemical potential \(\mu \)
 \[\langle e^{2i\Theta} \rangle = \left\langle \frac{\det^2 \mathcal{M}(\mu)}{|\det \mathcal{M}(\mu)|^2} \right\rangle \sim e^{-\#\mu^2} \quad \Rightarrow \quad \# \text{ config.} \sim e^{\#\mu^2}. \]
How reliable is this result?

Numerical arguments (de Forcrand 2010)

- Rescaling: ratio of two partition functions with energy difference
 \[
 \frac{Z(\mu)}{Z(0)} = e^{-\beta V \Delta f}
 \]
 ⇒ overlap exponentially vanishes for large volumes
 Statistics grows with \(\sqrt{N_{\text{step}}}\) ⇒ exponentially large number of steps are required in the thermodynamic limit

- Characterization of sign problem: isospin chemical potential \(\mu\)
 \[
 \langle e^{2i\Theta} \rangle = \langle \frac{\det^2 \mathcal{M}(\mu)}{|\det \mathcal{M}(\mu)|^2} \rangle \sim e^{-\#\mu^2} \Rightarrow \# \text{ config.} \sim e^{\#\mu^2}.
 \]

- At imaginary \(\mu/T \approx i\pi/3\) Roberge-Weiss phase transition
 ⇒ radius of convergence of the overlap to \(\mu = 0\) case is of the order \(\mu \sim T\) (ie. \(\mu_B \lesssim T\)).

Conclusion

MC methods are reliable for \(\frac{\mu_B}{3} = \mu \lesssim T\)
The MC determined CEP is not at continuum limit, not at physical point (large quark masses) . . .

P. Kovács and Zs. Szép had an elegant line of thought to assess the CEP in the physical point (cf. P. Kovács dissertation)

- Assume that Z. Fodor et.al. found the CEP
- one-parameter scaling hypothesis
 - experience: most sensitive quantity is pion mass $m_\pi \Rightarrow$
- Assume that the value of m_π determines the extrapolation to physical point
- in effective model calculation determine m_π-dependence of
 - width of the susceptibility peak $\Delta T(\chi)$
 - position of the CEP (μ_{CEP}, T_{CEP})
- finally determine the $\Delta T(\chi)$ dependence of the CEP!
Model calculation: $\Delta T(\chi)$ vs m_π approx. linear

μ_{CEP} vs $\Delta T(\chi)$ fits to numerical data (Fodor, Katz 2001, 2004).

At physical point at $\mu = 0$ the width of susceptibility curve is $\Delta T(\chi) \approx 28$ MeV (Aoki, Fodor et.al. 2006)

\Rightarrow Prediction $\mu_{CEP} \sim 1000$ MeV
Simplified realization of these ideas to QCD

\[P = P_{\text{hadr}} + P_{\text{QGP}} \text{ total pressure, } P_0 \text{ ideal gas pressure} \]

\[
P_{\text{hadr}}(T) = N_{\text{eff}}^{(\text{hadr})} \sum_{n \in \text{hadrons}} N_0(T, m_n), \quad \ln N_{\text{eff}}^{(\text{hadr})} = -(T / T_0)^b,
\]

\[
P_{\text{QGP}}(T) = N_{\text{eff}}^{(\text{part})} \sum_{n \in \text{partons}} N_0(T, m_n), \quad \ln N_{\text{eff}}^{(\text{part})} = G_0 - c(N_{\text{eff}}^{(\text{hadr}})^d.
\]

- **hadrons**: Hagedorn-sp. up to a certain mass \((m \lesssim 3 \text{ GeV})\)
- **partons**: quark and gluon quasiparticles
- \(N_{\text{hadr}}(\gamma)\) common suppression factor for all hadrons: stretched exponential, and \(\gamma \sim T\)
- \(N_{\text{part}}(N_{\text{hadr}})\) partonic suppression factor grows with the \# of available hadronic resonances.
Literature:

- **Z. Fodor and S. Katz papers**
 - (“Lattice determination of the critical point of QCD at finite T and mu”, JHEP 0203 (2002) 014)
 - (“Critical point of QCD at finite T and mu, lattice results for physical quark masses”, JHEP 0404 (2004) 050)

- **R.V. Gavai, Sourendu Gupta**

- **Ph. de Forcrand and O. Philipsen**
 - (“Simulating QCD at finite density”, PoS LAT2009 (2009) 010)
 - (“The Chiral critical line of N(f) = 2+1 QCD at zero and non-zero baryon density”, JHEP 0701 (2007) 077)

- **M.A. Stephanov**

- **R. Bellwied et al.**

- **Ch. S. Fischer, J. Luecker and Ch. A. Welzbacher**