Pixel Efficiency Update

Janos Karancsi, Viktor Veszpremi,
ATOMKI Debrecen
2010 Data processed

• Datasets:
 – /MinimumBias/Commissioning10-Jun14thReReco_v1/RECO
 – /MinimumBias/Run2010A-Nov4ReReco_v1/RECO
 – /MinimumBias/Run2010B-Nov4ReReco_v1/RECO

• CMSSW version:
 – CMSSW_3_6_1_patch4 (for Commissioning 10)
 – CMSSW_3_8_6 for 2010A and 2010B

• Lumi selection from JSON files:
 – Cert_132440-137028_7TeV_June14thReReco_Collisions10_JSON.txt
 (Only runs above 135 000 were selected)
 – Cert_136033-149442_7TeV_Nov4ReReco_Collisions10_JSON.txt
Event and track selection

- **Event Selection (vertex)**
 - Number of vertices ≥ 1, where $|z| < 15 \text{cm}$, $N_{\text{dof}} > 4$, $|\rho| < 2.0$

- **Track Selection for „generalTracks“ in BPix**
 - $p_T > 1 \text{ GeV}$
 - Track consistent with primary vertex ($|dz| < 0.1 \text{ cm}$, $|d0| < 0.01 \text{ cm}$)
 - Number of strip hits > 10
 - Valid hit conditions (listed on next slide)

- **Fiducial region selection (varies by module type)**
 - Avoid module overlaps and edges
 - Ensure that propagated track falls on the right module in Layer 1
Definition of efficiency

• Hits are required on the „other” layers or disks in order to remove bias due to pixel seeding
 – for Layer 1: on Layer 2+3, Layer 2 + Disk 1, Disk 1 +2
 – Layer 2: Layer 1+3, Layer 1 + Disk 1
 – Layer 3: Layer 1+2
 – Disk 1: Layer 1 +Disk 2, Layer 2 + Disk 2, Layer 3 + Disk 2
 – Disk 2: Layer 1 + Disk 1

• RecHit Efficiency Definition:
 – \(\text{Eff} = \frac{N_{\text{valid hits}}}{N_{\text{valid hits}} + N_{\text{missing hits}}} \)
 where both valid and missing hits come from track reconstruction, therefore it is affected by the cluster matching efficiency of the official tracking
 – Layer 1 definition:
 \(\text{Eff} = \frac{N_{\text{valid propagated hits}}}{N_{\text{valid propagated hits}} + N_{\text{missing propagated hits}}} \)
 where hits are propagated from valid Layer 2 hits onto Layer 1
Efficiencies in 2010

- Efficiency overall is measured \(~1\%\) lower than it was in early 2010. We see a drop when changing to CMSSW 3_6_X (exact reason is not yet known)
- Likely suspect is how clusters are attached to tracks. Tried to fix it as follows
Tracking hit – cluster matching

- Fraction of valid hits to all hits as a function of distance to nearest cluster (plot on the left) per module on Layer 2
 - Hits pass the selections described above (its track has hits on both Layer 1 and 3)
 - A sizable fraction of hits are missing but have a cluster within 100-300 microns!

- Nearest cluster (if exists) is within 500 microns for 99.9% of the hits (plot on the right)
 - Would lose 0.1% of hits (with cluster on the same module) if we considered hits valid only when having clusters within 500 microns – efficiency underestimated at most by 0.1%
But how many fake valid hits would be counted?
- Plotted nearest hit-hit separation on the same module
- Note: shape suggests no connection between hit-pairs (geometric probability)
- ~0.3% of hits have another hit within 1000 microns - could produce a fake valid hit

Tried removing hits which have another hit nearby on the same module
- Minimum hit separation: 5 mm (arbitrary choice) – do we remove all particle pairs?
Cluster – cluster separation

- Checked nearest second cluster, to see if we removed every hit-pairs on the same module
 - See effect of cutting on hit-hit separation, but a third of clusters remain (either they are on neighboring modules or have no tracks)
 - Peak at 600 microns (1-2% of all hits) are clusters that should also belong to the hit (split clusters?) assuming geometric probability
 - Based on the hit-separation plot, we estimate ~0.15% of associated clusters have another track with a cluster within 500 microns
New definition of efficiency

- Efficiency: keep every originally valid hit, and turn a missing hit valid if it has cluster within 500 microns
 - Fully efficient with smaller cluster search distance (red curve, first plot) than when valid hit is decided purely on cluster distance (black curve)
 - Cluster matching distance is arbitrary for now, but it should be as small as possible
 - We should avoid cutting hard on hit separation if we want to measure efficiency losses due to high occupancy (in pp collisions it is not needed)

- Overall layer efficiency (on the right) is accurate within 0.1%
Efficiency

Distribution

Difference from mean (sigma)

ROC efficiencies

- Distribution of efficiencies computed for each ROC
 - Oldeff: 98.5% +/- 0.3
 - Neweff: 99.9% +/- 0.15%
 - Max error on efficiency calculation with new method is ~0.1%

- Different performances between ROCs started to be visible?
Efficiencies in 2010 (new)

- 1% drop experienced starting with CMSSW 3_6_X is recovered
- Overall pattern similar to old efficiency – efficiency loss as function of luminosity is visible
- Inner layers experience consistently larger efficiency loss
Efficiency (new) map Layer 1 and 2

ROC efficiencies

Difference from mean ROC efficiency
Efficiency (new) map Layer 3

ROC efficiencies

Difference from mean ROC efficiency
Summary and plans

• Source of main efficiency loss in finding clusters to tracks is in the official tracking, this loss is removed from efficiency calculation

• Measured the efficiency in BPix for the entire 2010 running with ~0.1% accuracy

• FPix needs a similar study, we are planning to do it

• Efficiency of outlier ROCs are significantly different from the average

• We have compiled a list of inefficient ROCs in BPix
Efficiency (new) map Layer 1 and 2
Efficiency (new) map Layer 3